As machine learning and deep learning models grow in complexity, AI platform engineers and ML engineers face significant challenges with slow data loading and GPU utilization, often leading to costly investments in high-performance computing (HPC) storage. However, this approach can result in overspending without addressing the core issues of data bottlenecks and infrastructure complexity.
A better approach is adding a data caching layer between compute and storage, like Alluxio, which offers a cost-effective alternative through its innovative data caching strategy. In this webinar, Jingwen will explore how Alluxio's caching solutions optimize AI workloads for performance, user experience and cost-effectiveness.
What you will learn:
- The I/O bottlenecks that slow down data loading in model training
- How Alluxio's data caching strategy optimizes I/O performance for training and GPU utilization, and significantly reduces cloud API costs
- The architecture and key capabilities of Alluxio
- Using Rapid Alluxio Deployer to install Alluxio and run benchmarks in AWS in just 30 minutes
As machine learning and deep learning models grow in complexity, AI platform engineers and ML engineers face significant challenges with slow data loading and GPU utilization, often leading to costly investments in high-performance computing (HPC) storage. However, this approach can result in overspending without addressing the core issues of data bottlenecks and infrastructure complexity.
A better approach is adding a data caching layer between compute and storage, like Alluxio, which offers a cost-effective alternative through its innovative data caching strategy. In this webinar, Jingwen will explore how Alluxio's caching solutions optimize AI workloads for performance, user experience and cost-effectiveness.
What you will learn:
- The I/O bottlenecks that slow down data loading in model training
- How Alluxio's data caching strategy optimizes I/O performance for training and GPU utilization, and significantly reduces cloud API costs
- The architecture and key capabilities of Alluxio
- Using Rapid Alluxio Deployer to install Alluxio and run benchmarks in AWS in just 30 minutes
Presentation slides:
Video:
Presentation slides:
As machine learning and deep learning models grow in complexity, AI platform engineers and ML engineers face significant challenges with slow data loading and GPU utilization, often leading to costly investments in high-performance computing (HPC) storage. However, this approach can result in overspending without addressing the core issues of data bottlenecks and infrastructure complexity.
A better approach is adding a data caching layer between compute and storage, like Alluxio, which offers a cost-effective alternative through its innovative data caching strategy. In this webinar, Jingwen will explore how Alluxio's caching solutions optimize AI workloads for performance, user experience and cost-effectiveness.
What you will learn:
- The I/O bottlenecks that slow down data loading in model training
- How Alluxio's data caching strategy optimizes I/O performance for training and GPU utilization, and significantly reduces cloud API costs
- The architecture and key capabilities of Alluxio
- Using Rapid Alluxio Deployer to install Alluxio and run benchmarks in AWS in just 30 minutes
Presentation slides:
Video:
Presentation slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
Videos
In the rapidly evolving landscape of AI and machine learning, Platform and Data Infrastructure Teams face critical challenges in building and managing large-scale AI platforms. Performance bottlenecks, scalability of the platform, and scarcity of GPUs pose significant challenges in supporting large-scale model training and serving.
In this talk, we introduce how Alluxio helps Platform and Data Infrastructure teams deliver faster, more scalable platforms to ML Engineering teams developing and training AI models. Alluxio’s highly-distributed cache accelerates AI workloads by eliminating data loading bottlenecks and maximizing GPU utilization. Customers report up to 4x faster training performance with high-speed access to petabytes of data spread across billions of files regardless of persistent storage type or proximity to GPU clusters. Alluxio’s architecture lowers data infrastructure costs, increases GPU utilization, and enables workload portability for navigating GPU scarcity challenges.
In this talk, Zhe Zhang (NVIDIA, ex-Anyscale) introduced Ray and its applications in the LLM and multi-modal AI era. He shared his perspective on ML infrastructure, noting that it presents more unstructured challenges, and recommended using Ray and Alluxio as solutions for increasingly data-intensive multi-modal AI workloads.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.