In this presentation, Bin Fan (VP of Open Source @ Alluxio) will address a critical challenge of optimizing data loading for distributed Python applications within AI/ML workloads in the cloud, focusing on popular frameworks like Ray and Hugging Face. Integration of Alluxio’s distributed caching for Python applications is accomplished using the fsspec interface, thus greatly improving data access speeds. This is particularly useful in machine learning workflows, where repeated data reloading across slow, unstable or congested networks can severely affect GPU efficiency and escalate operational costs.
Attendees can look forward to practical, hands-on demonstrations showcasing the tangible benefits of Alluxio’s caching mechanism across various real-world scenarios. These demos will highlight the enhancements in data efficiency and overall performance of data-intensive Python applications. This presentation is tailored for developers and data scientists eager to optimize their AI/ML workloads. Discover strategies to accelerate your data processing tasks, making them not only faster but also more cost-efficient.
In this presentation, Bin Fan (VP of Open Source @ Alluxio) will address a critical challenge of optimizing data loading for distributed Python applications within AI/ML workloads in the cloud, focusing on popular frameworks like Ray and Hugging Face. Integration of Alluxio’s distributed caching for Python applications is accomplished using the fsspec interface, thus greatly improving data access speeds. This is particularly useful in machine learning workflows, where repeated data reloading across slow, unstable or congested networks can severely affect GPU efficiency and escalate operational costs.
Attendees can look forward to practical, hands-on demonstrations showcasing the tangible benefits of Alluxio’s caching mechanism across various real-world scenarios. These demos will highlight the enhancements in data efficiency and overall performance of data-intensive Python applications. This presentation is tailored for developers and data scientists eager to optimize their AI/ML workloads. Discover strategies to accelerate your data processing tasks, making them not only faster but also more cost-efficient.
Video:
Presentation slides:
In this presentation, Bin Fan (VP of Open Source @ Alluxio) will address a critical challenge of optimizing data loading for distributed Python applications within AI/ML workloads in the cloud, focusing on popular frameworks like Ray and Hugging Face. Integration of Alluxio’s distributed caching for Python applications is accomplished using the fsspec interface, thus greatly improving data access speeds. This is particularly useful in machine learning workflows, where repeated data reloading across slow, unstable or congested networks can severely affect GPU efficiency and escalate operational costs.
Attendees can look forward to practical, hands-on demonstrations showcasing the tangible benefits of Alluxio’s caching mechanism across various real-world scenarios. These demos will highlight the enhancements in data efficiency and overall performance of data-intensive Python applications. This presentation is tailored for developers and data scientists eager to optimize their AI/ML workloads. Discover strategies to accelerate your data processing tasks, making them not only faster but also more cost-efficient.
Video:
Presentation slides:
Videos:
Presentation Slides:
Complete the form below to access the full overview:
Videos
In the rapidly evolving landscape of AI and machine learning, Platform and Data Infrastructure Teams face critical challenges in building and managing large-scale AI platforms. Performance bottlenecks, scalability of the platform, and scarcity of GPUs pose significant challenges in supporting large-scale model training and serving.
In this talk, we introduce how Alluxio helps Platform and Data Infrastructure teams deliver faster, more scalable platforms to ML Engineering teams developing and training AI models. Alluxio’s highly-distributed cache accelerates AI workloads by eliminating data loading bottlenecks and maximizing GPU utilization. Customers report up to 4x faster training performance with high-speed access to petabytes of data spread across billions of files regardless of persistent storage type or proximity to GPU clusters. Alluxio’s architecture lowers data infrastructure costs, increases GPU utilization, and enables workload portability for navigating GPU scarcity challenges.
In this talk, Zhe Zhang (NVIDIA, ex-Anyscale) introduced Ray and its applications in the LLM and multi-modal AI era. He shared his perspective on ML infrastructure, noting that it presents more unstructured challenges, and recommended using Ray and Alluxio as solutions for increasingly data-intensive multi-modal AI workloads.
As large-scale machine learning becomes increasingly GPU-centric, modern high-performance hardware like NVMe storage and RDMA networks (InfiniBand or specialized NICs) are becoming more widespread. To fully leverage these resources, it’s crucial to build a balanced architecture that avoids GPU underutilization. In this talk, we will explore various strategies to address this challenge by effectively utilizing these advanced hardware components. Specifically, we will present experimental results from building a Kubernetes-native distributed caching layer, utilizing NVMe storage and high-speed RDMA networks to optimize data access for PyTorch training.